Gene Expression Analysis: Applications

Cancer is a highly variable, heterogeneous disease induced by the accumulation of numerous genetic and environmental factors. Understanding such a complex system and the intertwining of its multitude of biological functions would require complete deciphering of the human genome [1]. In the post-genomic era, the field of biology has transitioned from detecting differentially expressed single genes to a more systems-based focus, turning to approaches for finding differentially altered pathways. The DNA microarray has emerged as one of the key tools used in gene expression profiling. The power of microarrays, compared to other traditional methods of gene expression analysis (i.e. serial analysis of gene expression and quantitative real time PCR), lies in its ability to quanitify in parallel thousands of genes across multiple samples. The increased availability and affordability of genomic technologies together with the development of information processing technologies has enabled the generation and analysis of copious amounts of data. As a result, gene expression profiling has become a readily used tool, integral to characterising tumour molecular profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 93.08 Price includes VAT (France)

Softcover Book EUR 116.04 Price includes VAT (France)

Hardcover Book EUR 158.24 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Methods of Analysis and Meta-Analysis for Identifying Differentially Expressed Genes

Chapter © 2018

Introduction to Microarray Technology

Chapter © 2019

Gene Expression Studies Using Microarrays

Chapter © 2016

References

  1. Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18(2):224–237 ArticleCASPubMedGoogle Scholar
  2. Nam S, Park T (2012) Pathway-based evaluation in early onset colorectal cancer suggests focal adhesion and immunosuppression along with epithelial-mesenchymal transition. PLoS One 7(4), e31685 ArticleCASPubMedPubMed CentralGoogle Scholar
  3. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y et al (2009) Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 5(10), e1000676 ArticlePubMedPubMed CentralGoogle Scholar
  4. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822 ArticleCASPubMedGoogle Scholar
  5. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767 ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208(7):1389–1401 ArticleCASPubMedPubMed CentralGoogle Scholar
  7. Shah MA, Khanin R, Tang L, Janjigian YY, Klimstra DS, Gerdes H, Kelsen DP (2011) Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res 17(9):2693–2701 ArticleCASPubMedPubMed CentralGoogle Scholar
  8. Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, Kultz D, Weiss RH (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 5:64 ArticlePubMedPubMed CentralGoogle Scholar
  9. Setlur SR, Royce TE, Sboner A, Mosquera J-M, Demichelis F, Hofer MD, Mertz KD, Gerstein M, Rubin MA (2007) Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res 67(21):10296–10303 ArticleCASPubMedGoogle Scholar
  10. Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, Gerald D, Benjamin LE, Priolo C, Puxeddu E et al (2010) B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci U S A 107(23):10649–10654 ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721 ArticleCASPubMedPubMed CentralGoogle Scholar
  12. Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 4(5):41 ArticleCASPubMedPubMed CentralGoogle Scholar
  13. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978 CASPubMedGoogle Scholar
  14. Debouck C, Goodfellow PN (1999) DNA microarrays in drug discovery and development. Nat Genet 21:48–50 ArticleCASPubMedGoogle Scholar
  15. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244 ArticleCASPubMedGoogle Scholar
  16. Von Hoff DD, Stephenson JJ, Rosen P, Loesch DM, Borad MJ, Anthony S, Jameson G, Brown S, Cantafio N, Richards DA et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28:4877–4883 ArticleGoogle Scholar
  17. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci 98(24):13790–13795 ArticleCASPubMedPubMed CentralGoogle Scholar
  18. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Raffeld M et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548 ArticleCASPubMedGoogle Scholar
  19. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai K-M, Ji J, Dudoit S, Ng IOL et al (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13(6):1929–1939 ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62(10):2890–2896 CASPubMedGoogle Scholar
  21. Tonin PN, Hudson TJ, Rodier F, Bossolasco M, Lee PD, Novak J, Manderson EN, Provencher D, Mes-Masson AM (2001) Microarray analysis of gene expression mirrors the biology of an ovarian cancer model. Oncogene 20(45):6617–6626 ArticleCASPubMedGoogle Scholar
  22. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849):822–826 ArticleCASPubMedGoogle Scholar
  23. Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, Kodama T, Aburatani H (2002) Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 62(1):233–240 CASPubMedGoogle Scholar
  24. Al Moustafa AE, Alaoui-Jamali MA, Batist G, Hernandez-Perez M, Serruya C, Alpert L, Black MJ, Sladek R, Foulkes WD (2002) Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 21(17):2634–2640 ArticlePubMedGoogle Scholar
  25. Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R, Nita ME, Takagi T, Nakamura Y, Tsunoda T (2001) Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res 61(9):3544–3549 CASPubMedGoogle Scholar
  26. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A 98(24):13784–13789 ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Belbin TJ, Singh B, Barber I, Socci N, Wenig B, Smith R, Prystowsky MB, Childs G (2002) Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res 62(4):1184–1190 CASPubMedGoogle Scholar
  28. van 't Veer LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187):564–570 Google Scholar
  29. Perou C, Sorlie T, Eisen M, van de Rijn M, Jeffrey S, Rees C, Pollack J, Ross D, Johnsen H, Akslen L et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752 ArticleCASPubMedGoogle Scholar
  30. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874 ArticleCASPubMedPubMed CentralGoogle Scholar
  31. Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst Google Scholar
  32. Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, Nicholson RI, Lee AHS, Robertson JFR, Ellis IO (2007) Biologic and clinical characteristics of breast cancer with single hormone receptor–positive phenotype. J Clin Oncol 25(30):4772–4778 ArticlePubMedGoogle Scholar
  33. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800 ArticleCASPubMedGoogle Scholar
  34. van 't Veer LJ, Dai HY, van de Vijver MJ, He YDD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536 Google Scholar
  35. van de Vijver MJ, He YD, van 't Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2009) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009 Google Scholar
  36. Saghatchian M, Mook S, Pruneri G, Viale G, Glas AM, Guerin S, Cardoso F, Piccart M, Tursz T, Delaloge S et al (2013) Additional prognostic value of the 70-gene signature (MammaPrint((R))) among breast cancer patients with 4–9 positive lymph nodes. Breast 22(5):682–690 Google Scholar
  37. Mook S, Schmidt MK, Weigelt B, Kreike B, Eekhout I, van de Vijver MJ, Glas AM, Floore A, Rutgers EJ, van 't Veer LJ (2010) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 21(4):717–722 ArticleCASPubMedGoogle Scholar
  38. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, Vrancken Peeters MJ, van Tinteren H, Van't Veer LJ, Rodenhuis S (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119(3):551–558 ArticlePubMedGoogle Scholar
  39. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, Koornstra RH, Bueno-de-Mesquita JM, Linn SC, van 't Veer LJ (2010) The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120(3):655–661 ArticleCASPubMedGoogle Scholar
  40. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272 ArticleCASPubMedGoogle Scholar
  41. Liedtke C, Hatzis C, Symmans WF, Desmedt C, Haibe-Kains B, Valero V, Kuerer H, Hortobagyi GN, Piccart-Gebhart M, Sotiriou C et al (2009) Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol 27(19):3185–3191 ArticlePubMedPubMed CentralGoogle Scholar
  42. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685 ArticleCASPubMedGoogle Scholar
  43. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22(12):2284–2293 ArticleCASPubMedGoogle Scholar
  44. Sabatier R, Gonçalves A, Bertucci F (2014) Personalized medicine: present and future of breast cancer management. Crit Rev Oncol Hematol 91(3):223–233 ArticlePubMedGoogle Scholar
  45. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V et al (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20(1):68–80 ArticleCASPubMedPubMed CentralGoogle Scholar
  46. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892 ArticleCASPubMedPubMed CentralGoogle Scholar
  47. Marshall E (2004) Getting the noise out of gene arrays. Science 306(5696):630–631 ArticleCASPubMedGoogle Scholar
  48. Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2(8), e124 ArticlePubMedPubMed CentralGoogle Scholar
  49. Simon R (2006) Development and evaluation of therapeutically relevant predictive classifiers using gene expression profiling. J Natl Cancer Inst 98(17):1169–1171 ArticleCASPubMedGoogle Scholar
  50. Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W (2010) DNA microarrays are predictive of cancer prognosis: a re-evaluation. Clin Cancer Res 16(2):629–636 ArticleCASPubMedGoogle Scholar
  51. Shi L, Perkins RG, Fang H, Tong W (2008) Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. Curr Opin Biotechnol 19(1):10–18 ArticleCASPubMedGoogle Scholar
  52. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399 CASPubMedGoogle Scholar
  53. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525 ArticleGoogle Scholar
  54. Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, Mose LE, Troester MA, Hammerman PS, Parker JS, Perou CM et al (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42:e107 Google Scholar
  55. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628 ArticleCASPubMedGoogle Scholar
  56. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform 11:94 ArticleGoogle Scholar
  57. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25 ArticlePubMedPubMed CentralGoogle Scholar
  58. Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220 ArticleCASPubMedPubMed CentralGoogle Scholar
  59. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J et al (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683 ArticleCASPubMedGoogle Scholar
  60. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53 ArticleCASPubMedGoogle Scholar
  61. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, Hinoue T, Laird PW, Curtis C, Shen H et al (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature Google Scholar
  62. Daemen A, Griffith OL, Heiser LM, Wang NJ, Enache OM, Sanborn Z, Pepin F, Durinck S, Korkola JE, Griffith M et al (2013) Modeling precision treatment of breast cancer. Genome Biol 14:R110 ArticlePubMedPubMed CentralGoogle Scholar
  63. Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95 ArticlePubMedPubMed CentralGoogle Scholar
  64. Smyth GK (2005) Limma: Linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit R (eds) Bioinformatics and computational biology solution using R and bioconductor. Springer, New York, pp 397–420 ChapterGoogle Scholar
  65. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc 8:1765–1786 ArticlePubMedGoogle Scholar
  66. Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29:656–657 Google Scholar
  67. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304 Google Scholar
  68. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29 Google Scholar
  69. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14 ArticlePubMedPubMed CentralGoogle Scholar
  70. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73 ArticlePubMedGoogle Scholar
  71. Su Z, Łabaj PP, Li S, Thierry-Mieg J, Thierry-Mieg D, Shi W, Wang C, Schroth GP, Setterquist RA, Thompson JF et al (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol Google Scholar
  72. Lahens NF, Kavakli IH, Zhang R, Hayer K, Black MB, Dueck H, Pizarro A, Kim J, Irizarry R, Thomas RS et al (2014) IVT-seq reveals extreme bias in RNA-sequencing. Genome Biol 15:R86 ArticlePubMedPubMed CentralGoogle Scholar
  73. Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, Sivachenko A, Thompson DA, Wysoker A, Fennell T et al (2013) Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods 10:623–629 ArticleCASPubMedPubMed CentralGoogle Scholar
  74. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38, e131 ArticlePubMedPubMed CentralGoogle Scholar
  75. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673 ArticleCASPubMedGoogle Scholar
  76. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Lao K, Surani MA (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5:516–535 ArticleCASPubMedGoogle Scholar
  77. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779 ArticleCASPubMedPubMed CentralGoogle Scholar
  78. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46 ArticleCASPubMedGoogle Scholar
  79. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SSF, Li C, Amamoto R et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363 ArticleCASPubMedPubMed CentralGoogle Scholar

Author information

Authors and Affiliations

  1. Translational Breast Cancer Genomics Lab, Cancer Therapeutics Program, Division of Research, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia Peter Savas, Zhi Ling Teo & Sherene Loi
  1. Peter Savas